CS103 Handout 37
Fall 2018 November 2, 2018
Practice Second Midterm Exam V

This exam is closed-book and closed-computer. You may have a double-sided, 8.5” x 117 sheet of
notes with you when you take this exam. You may not have any other notes with you during the
exam. You may not use any electronic devices (laptops, cell phones, etc.) during the course of this
exam. Please write all of your solutions on this physical copy of the exam.

You are welcome to cite results from the problem sets or lectures on this exam. Just tell us what
you're citing and where you're citing it from. However, please do not cite results that are beyond
the scope of what we've covered in CS103.

On the actual exam, there'd be space here for you to write your name and sign a
statement saying you abide by the Honor Code. We're not collecting or grading
this exam (though you're welcome to step outside and chat with us about it when
you're done!) and this exam doesn't provide any extra credit, so we've opted to
skip that boilerplate.

You have three hours to complete this practice midterm. There are 36 total points. This practice
midterm is purely optional and will not directly impact your grade in CS103, but we hope that you
find it to be a useful way to prepare for the exam. You may find it useful to read through all the
questions to get a sense of what this practice midterm contains before you begin.

You have three hours to complete this exam. There are 48 total points.

Question Points Graders
(1) Equivalence Relations /12
(2) Strict Orders /12
(3) Graph Theory /12
(4) Induction and Cardinality /12
/48
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Problem One: Equivalence Relations (12 Points)
(Midterm Exam, Fall 2017)

On Problem Set Three, you explored equivalence relations and equivalence classes. On Problem Set Five,
you saw how to apply the pigeonhole principle to binary relations. This problem is designed to let you
show what you’ve learned in the course of doing so.

As a refresher, if R is an equivalence relation over a set A and x € A, then the equivalence class of x in R,
denoted [x]k, is the set

[x]r={y€eA | xRy }.

A foundational result about equivalence relations is the fundamental theorem of equivalence relations,
which says that if R is an equivalence relation over a set A and x € A, then x belongs to exactly one equiva-
lence class in R. Although we stated this result in class, we never actually proved it. As a first step in this
problem, we’d like you to prove a part of this result.

i. (4 Points) Prove that if R is an equivalence relation over a set A and x € A, then x belongs to at
least one equivalence class in R. To clarify, you do not need to prove that x belongs to exactly one
equivalence class in R, just that it belongs to at least one equivalence class in R.

Feel free to use this space for scratch work. There’s room to write your answer on the next page of
this exam.
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(Extra space for your answer to Problem One, Part (i), if you need it.)



4/15

Let’s now introduce some new notation. If R is an equivalence relation over a set A, the index of R, de-
noted I(R), is the number of equivalence classes in R. Additionally, the width of R, denoted W(R), is the
number of elements in the largest equivalence class in R.

ii. (8 Points) Using your result from part (i) and the pigeonhole principle, prove that if R is an equiv-
alence relation over a set A and |Al = n*> + 1 for some positive natural number n, then I(R) > n + 1
or W(R) 2 n + 1 (or both).

Feel free to use this space for scratch work. There’s room to write your answer on the next page of
this exam.
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(Extra space for your answer to Problem One, Part (ii), if you need it.)
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Problem Two: Binary Relations (12 Points)
(Midterm Exam, Fall 2017)

In C, C++, Java, and many other languages, the double type represents a real number, with a few key
caveats. One particular example of this is the special value NaN, short for “not a number.” In C++, if you
try to take the square root of a negative number, the result is NaN. (You can also get NaN by dividing 0.0
by 0.0, and in a few other ways). For example:

double result = sqrt(-137.0);
cout << result << endl; // Prints NaN

Notice that the value NaN is actually stored in the variable result. NaN is a perfectly legal value for a
double, just as 137 and -2.718 are.

Things get a bit weird when looking at comparisons between doubles when one or both doubles is NaN.
Specifically, any comparison involving NaN will evaluate to false. For example, in C++, all of the follow-
ing comparisons evaluate to false:

NaN < 137 137 < NaN NaN < NaN

Modeling things mathematically, we can imagine that the doub'le type represents either a real number or
the special value NaN. In other words, a double represents a value from R U {NaN}. The less-than opera-
tor over doubles in C++ then behaves like the following relation S over the set R U {NaN}:

xSy if x#NaN A y#NaN A x<y

(In the above, the notation x < y means that x is less than y in the conventional sense of one real number
being less than another. Also, remember that the “if” in the above statement is interpreted as “is defined
as” and is not an implication.)

i. (5 Points) Prove that S is a strict order over the set R U {NaN}. You can assume that the < rela-
tion over R is a strict order.

Feel free to use this space for scratch work. There’s room to write your answer on the next page
of this exam.
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(Extra space for your answer to Problem Two, Part (i), if you need it.)
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As a refresher from the previous page, the relation S is defined over the set R U {NaN} as follows:
xSy if x#NaN A y#NaN A x<y

Again, the notation x < y denotes the less-than relation over real numbers, which you can assume is a
strict order and behaves the way you’ve seen it work in the past.

On Problem Set Three, you explored how, for a strict order R over a set A, it’s possible to define the
incomparability relation of R, denoted ~g. As a refresher, the incomparability relation ~¢ is a binary re-
lation over the set A defined as follows:

X~RY if xRy A yRx
Notice that there are slashes through those R’s, and remember that the “if” here means “is defined as.”

ii. (3 Points) Give a definition for the ~s relation over R U {NaN} by filling in the following blank.
Please provide the simplest answer that you can. No justification is necessary. First-order logic
notation is perfectly fine here.

X~sy if

Below is some scratch space you can use in the course of working through this problem.

As you saw on Problem Set Three, a binary relation R over a set A is called a strict weak order if R is a
strict order and the relation ~ is transitive.

iii. (4 Points) Prove or disprove: the S relation over R U {NaN} is a strict weak order.

Feel free to use this space for scratch work. There’s room to write your answer on the next page
of this exam.
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(Extra space for your answer to Problem Two, Part (iii), if you need it.)
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Problem Three: Graph Theory (12 Points)
(Midterm Exam, Fall 2017)

On Problem Set Four, you played around with several different structures that arise in graphs (indepen-
dent sets, cliques, colorings, and vertex covers). You revisited some of these structures in Problem Set
Five. This question explores some additional properties of some of those graph structures.

First, some refreshers from Problem Set Four. An undirected graph G = (V, E) is called bipartite if there
exist two sets V; and V, such that

* every node v € V belongs to exactly one of V; and V,, and
* every edge e € E has one endpoint in V; and the other in V,.
These two sets V; and V, are called bipartite classes of G.
An independent set in a graph G = (V, E) is a set I C V with the following property:
Yuel Yvel {u,v} ¢LE.
A vertex cover in a graph G = (V, E) is a set C C V with the following property:
YueV.YveV.({lu,vie E—->ueCvve().

Let’s now introduce a new definition. We'll say that a whimsical set in a graph G = (V, E)isaset WC V
such that W is simultaneously an independent set of G and a vertex cover of G.

Prove that if G = (V, E) is a graph and W C V is a whimsical set in G, then G is a bipartite graph. As a
hint, prove that W and V — W are the bipartite classes of G.

Feel free to use this space for scratch work. There’s room to write your answer on the next page of this
exam.
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(Extra space for your answer to Problem Three, if you need it.)
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Problem Four: Induction and Cardinality (12 Points)
(Midterm Exam, Fall 2017)

On Problem Set Four, you explored different properties of functions in the context of cardinality. On
Problem Set Five, you explored how to combine cardinality arguments and mathematical induction.
This problem explores another interplay between the two concepts.

Suppose you have a function f: A — A from some set to itself where f is injective but not surjective. It
turns out that knowing nothing more than this about the set A, you can conclude that A has to be an infi-
nite set. This question explores why this is.

i. (1 Point) Since f: A — A is not surjective, we know that the following first-order logic statement
about f'is not true:

VxeA. dye A. f(y)=x

Since the above formula is not true, its negation must be true. Negate the above first-order logic
statement and simplify it as much as possible.

Negation of this formula:

Here’s a little scratch space in case you need it.

The negation that you came up with in part (i) of this problem tells us that there’s an element x € A with
certain properties. We can use this element x to define the following recurrence relation:

ep = Xx,where x is the element of A singled out above.
€n+1 = f (en)
This recurrence relation has an interesting set of properties.

ii. (3 Points) Prove that e, # e, that ¢y # e, and that e; # ¢,. Remember that f : A — A is injective
but not surjective. It might help to expand out the definitions of ¢y, e;, and e, here.

Feel free to use this space for scratch work. There’s room to write your answer on the next page of
this exam.
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(Extra space for your answer to Problem Four, Part (ii), if you need it.)



14715

As a refresher from the previous pages, we're assuming that f : A — A is a function that is injective but
not surjective. We singled out an element x € A with some special properties you described in part (i), and
used it to define the following recurrence relation:

ep = x,where x is the element of A singled out above.

€n+1 = f(en)

In part (ii) of this problem, you saw that the first three terms of this sequence are all different. It turns out
that this result generalizes to all terms of the sequence.

iii. (8 Points) Prove, by induction on #, that this predicate P(n) is true for all n € N:
P(n) is the statement “for any m € N where m < n, we have e, # e,.”

As a hint on this problem, the reasoning you’ll need to use here is very similar to the reasoning for
part (ii) of this problem. You might find this problem easier to solve if you explicitly write out
what it is that you’re assuming at each point in the proof and what it is that you need to prove.

Feel free to use this space for scratch work. There’s room to write your answer on the next page of
this exam.

(As an aside, what you're proving here shows that no two terms in the sequence are equal. As a re-
sult, the set A has to be infinite!)
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(Extra space for your answer to Problem Four, Part (iii), if you need it.)



